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Table 2 contains the results of the Poisson estimation. We display the parameter estimates and
the asymptotic absolute t-values using Poisson-, White— and M N — standard errors. The Poisson t-
values are extremely high throughout, and inference based on them leads to a rejection of all but one
hypothesis test against zero at the 5% confidence level. Considering the robust f-values it becomes
evident that this would be a falacious decision in most of the cases. They are roughly one tenth
of the Poisson t-values indicating a high degree of overdispersion in the model. The tpn-values
are mostly smaller than the typi-values. Based on the White or MN t-values, only MARKET
DIVERSIFICATION and the CONSUMPTION GOODS dummy are significant for both years. For
the firm size / market concentration debate, the robust {-values indicate no substantial influence of
market power as measured by the HERFINDAHL INDEX on inventive activity. FIRM SIZE has a
significant effect only in 1982. Since the estimated coefficient for FIRM SIZE squared is negative, we
observe a maximum in the relevant range with first positive but diminishing marginal returns and
then negative marginal returns. However, the estimated robust t-values in contrast to the standard
Poisson case are too low to rely on this finding.

5 CONCLUSION

Using results on the asymptotic distribution of a QMLE, we were able to derive that overdispersion
will yield Poisson standard errors which underestimate the true standard errors of the estimator and
that underdispersion will do the reverse. A Monte Carlo study for overdispersed data demonstrated
how serious the problem is already in the presence of a modest violation of equidispersion. As an
alternative, we proposed to base inference on robust standard errors. We studied two alternative
approaches: The W hite-standard errors require only the assumption of a correctly specified mean
function, whereas the M N-standard errors also need an assumption with respect to the variance
function. The Monte Carlo evidence suggests that they both behave well for overdispersed data
already in medium sized samples.

An important share of the existing literature has used more general parametric models, _mr.m
for instance the negative binomial, to account for a violation of the Poisson assumption. This
might, however, lead to inconsistent parameter estimates if the specific assumptions made about the
departure from equidispersion are not fulfilled. Moreover, the computations might be cumbersome.
A viable alternative model strategy is to use the Poisson quasi-likelihood and base inference on robust
standard errors. We used this strategy to analyse a data set on patent activities, demonstraling that
the approach might help to find more sound conclusions for issues of substantial policy relevance.
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1. Introduction

In many applications the functional form of a nonlinear process is neither likely to be known
nor fit conveniently into commonly used parametric frameworks, such as bilinear models (Granger
and Andersen, 1978), threshold autoregressions (Tong, 1983), exponential autoregressions (Ozaki,
1981), random-coefficient autoregressions (Tsay, 1987), or ARCH models (Engle, 1982). In this ¢

it seems to be more appropriate to work with suitable approximations of the underlying process,

o
autoregressions (Mittnik, 1991a,b) can improve upon linear autoregressions in modeling financial

In this paper, we have two objectives. The first is to examine to what degree nonlinear general

data. The second is the application of seminonparametric models, as suggested by Gallant and
Nychka (1987) and Gallant and Tauchen (1989), to modeling non-normality and heterogeneity in
time series. In particular, we investigate whether the departures from Gaussianity financial data
can be interpreted as model misspecifications. The empirical analysis is based on a time series of
high-frequency, real-time Standard and Poor's 500 cash-index prices from the Chicago Mercantile
“xchange. Experimental evidence in Mayfield and Mizrach (1991) seems to indicate that Lhis data
series might have a low-dimensional nonlinear structure.

The paper is organized as follows. The next section provides some background for representations

of nonlinear processes. Section 3 briefly describes the generalized autoregression approach. Semi-

nonparametric approximations are discussed in Section 4. The empirical applicatio

s presente

Section 5. Concluding remarks are given in the final section.

2. The Volterra Expansion

Let {z¢};2, be a zero-mean, covariance stationary process. Taking the linear projection of r, on
past realizations of z,, we obtain a series of white noise residuals, €, = 2, — P(z¢|7r,_1, 712
P(-|-) is the projection operator. The Wold representation of {z.};2, is given by 7, = 57",

of the Wald

representation relies crucially on the linearily of Lthe data generating mechanism for z¢. If the 2's were

with 3532, b} <'co, where by = 1 and 7 is a linearly deterministic process. The exist

the realizations of a nonlinear transform, the ¢'s, though uncorrelated, would not be independent.

An analogous representation for nonlinear time series is the Volterra expansion. It closely

sembles a Taylor series expansion, and will exist whenever a convergent Taylor series approxin
of the data generating mechanism exists. Assuming that {¢}2, is an independent and ide
distributed stochastic process defined on the finite interval [¢, €], consider the Lransform

2= F(Feoyyerny Erap) F €05 ()
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where f: R? — R is a stochastic difference equation.! The Volterra-series expansion of f, given by

2= f(0)+ 3 fuze—iy +

2)

H unl.nmmbhﬂx,.ﬂ nnn.gmn.:...._m_.m_._n_m_.onw_._m:._cﬁm.m:aax.._._u. :m.:-:.ae_::.»
an arbitrarily precise local w_unqoxmq:m_.wo: through a polynomial in lags of z, for finite z,'s.
Expansion (2) is not particularly attractive for applied work. Even if p is of finite order, one may
need an infinite number of kernels for the series expansion. However, this problem arises also in the
inear case. The Wold representation is also infinite dimensional. We will follow the linear ARMA

iterature in assuming that z, can be well approximated by a finite number of parameters, truncating

our serics expansion at some finite degree.

3. Generalized Autoregressions

In Mittnik (1991a,b), truncated versions of (2) are referred to as generalized autoregressions
(GARs). A generalized autoregression of degree r and order p, in short, a GAR(r,p) process, is
defined by

=3 M Muh-_q._qu_.u_..u”w._m+n.. (3)

=013=0 ip=0 =1

It follows from (3) that a process is a GAR(r, p) process if all coefficients associated with monor
involving lags of order p+ 1 and higher or powers of degree r + 1 and higher are zero and if at least
one coeflicient of monomials involving z,_, and one involving x}_;, for ¢ € {1,2,...,p}, are nonzero.

5

Often it is more convenient to work with a state-space or first-order Markovian representation
than the higher-order difference representation (3). Asis shown in Mittnik (1991b), (3) has the state
space representation

i =An+ Nx®z)+Bx,, 1,=Cz+e, (4)

where x, = (2, 2},...,2])" and 2, is the state vector at time t.
Because a GAR model is linear in the parameters, conditional least squares may be used for
estimation. In view of potential overparameterization problems, subset regressions or other forms of

restriclions may be required in practice.

4. Seminonparametric Approximation of Density Functions

Phillips (1983) introduced to the econometrics literature an approach to approximating proba-
bility den which underlies seminonparametric methods. Elbadwi et al. (1983) coined the term
seminonparametric to indicate an estimation approach that is partly parametric and par!
metric. T

ly nonpara-

he parametric component consists of specifying a functional form for the conditional mean:

the nonparametric part is the approximation of the higher moments of the conditional density.
Phillips showed that any probability density function (pdf), denoted by h(z) can be approximated

"Under fairly weak conditions, f can be locally approximated by an infinite seriea expansion. If f is an analytic
function, then all partial derivatives of f exist and z; has a uniformly convergent Taylor-series expansion.

SRR

2 TN T My,

i
i
%

L S

i g

209

arbitrarily well by the family of extended rational approximants,

haHNw
Qn(2)

where @(z) denotes the normal density and Pm(z) and Qn(z) are polynomials of degree m
respectively. Gallant and Nychka (1987) prove consistency of the maximum

o+ @z 4+ ap 2™
bo+ bzt oot byan

h(z) = 8(z) 25 = a(z)

allowing the degree of the polynomials, m and n, to grow with the sample size

Our implementation of this estimator follows closely the work of Gallant and Tauchen (| )).
In Lhe linear case, the conditional mean of yr is modeled by linear autoregression y, = YieiB+ =
where vy = (1,41, .., 41,)". The pdf of the residuals, denoted by h(z,), is approximated

Hermite polynomial expansion?

()20 @,34)*(z)
] gm0 TR TAR '
h(z; K,) J(E5, aju)20(u)du "

Polynomial Munu_._. a;z] reflects departures from Gaussianity in the conditional density. If i, =0,

h(z) reduces to the normal distribution.

Heterogeneities in the conditional density are permitted by allowing the cocflicients a, to depend

on lagged dependent variables. Analogous to (3) we express a; in lerms of a Ky-degree polynan

in g fori=1,, ey e,

Ky Ky Ky

ai(yenKn)=3 3 - 3 ai,

n=0i=0 ip=0

Incorporating this into (6) describes the seminonparametric model with lag length p and
mial degrees K, and K} or, in shorl, the SNP(p, K, K1) model with conditional density

(25 ajlyear, Ka)zP0(=)
T2y a5(yies, Ko )w P (u)du’

hiz; _}‘34}.‘_; = 15)

5. Empirical Analysis

anel

returns in terms of log differences of the index level, the raw data, as can be scen |
positively skewed and highly leptokurtic.

e 1, are

The empirical application consists of three parts. First, we examine the in-sample fit of AR ;

GAR models. Second, we investigate their out-of-sample forecasting performances and com

to the one of a random walk (RW). Finally, we examine to what extent departures from

or homogeneity can be due to misspecification of the functional form for the co nal mean

In the univariate case, it is easy Lo show that the expansion is orthogonal. Let {1, be the nth order e
polynomial and let I, be the mth order. Then E(HaHm) =0, for m # n. See Kendall and Stuart (1962) fur rx
calculation of the first ten or so Hermite polynomials and proof of the assertion of orthogonality

We Lake the square in the numerator to ensure that the density is everywhere positive and divide by the intep;
the denominator to ensure that Thizde=1.

in
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Table 1: Statistical Analysis of S&P500 Raw Data and Model Residuals®

Raw Data AR Residuals GAR Residuals

Statistic Full In Out In Qut In Qut
Mean 1.07TE-5 1.18E-5 8.51E-7 | -1.68E-8 -3.61E-6 | -1.93E-8 -3.06E-6
Std. Dev. | 9.85E-5 9.73E-5 1.09E-4 | 8.78E-5 9.76E-5 | 8.62E-5 9.T3E-5
Skew 1.3117  1.6947 -1.1071 1.5993  -0.2966 1.6607  -0.3603
Kurtosis | 27.0907 29.7335 10.3106 | 36.7696  9.5923 | 38.6430 10.2308
® The full sample consiats of 5000 observations. Models are fit over the in-sample period consisting
of the first 4,500 observations. The initial 12 in-sample observations are used for estimation and

models selection purposes and are dropped from the analysis. The f are tep-ahead
dictions for the out-of-sample period consisting of the subsequent 500 observation.

Table 2: Forecasting Comparison®

Linear AR GAR Random Walk
MSPE 9.756E-5 9.721E-5 3.131E-4
AR vs. RW GAR vs. RW GAR vs. AR
Stat. (9) 3.272 3.272 0.812
_p-value 0.001 0.001 0.417
¥ The comparison is based on 500 one-step-shead cut-of-sample-
fi t without imation. Statistic (0) has an asymptotic stan-

dard normal distribution. The p-value is for a two-sided test.

5.1. In-Sample Estimation

With the goal of parsimony in mind, we use the Bayesian Information Criterion (BIC) for model
selection, i.e., BIC = logé? + kT ' log T', where 4,2 is the standard error of the residuals, & is the
number of parameters, and T is the sample size.

In the linear case, the minimum BIC value (-20.967) is obtained with an AR(8) model. Starting
with this AR(8) model, we then used stepwise-regression methods to select additional nonlinear
monomials from a GAR(2,3) process. The minimum BIC value (-20.995) was obtained when including
the four monomials y2 ¥e-z, Ye-1¥2 3, Ve-1¥i-2¥2-3, and ¥2_,y1-2¥;_5. The improvement of the fit over
the linear case is fairly modest. The standard deviation of the in-sample residuals, reported in Table
1, is only 0.3% smaller for the GAR model.

5.2. Out-of-Sample Forecasting

We use the remaining 500 observations for an out-of-sample forecasting exercise comparing the
AR, GAR and, as a naive benchmark, RW models. The latter is also of interest to financial
economists, since it has some implications for market efficiency. One-step-ahead forecasts, with
updating of the dependent variables, but no reestimation of the coefficients were computed.

Table 2 compares the three models on the basis of their mean-squared prediction error (MSPE).
Of the three, the GAR produces the best point forecasts. The victory over the AR model is fairly
modest, the MSPE is only 0.3% smaller. Both the linear and nonlinear models improve substantially
over the RW though, with MSPE reductions of more than 300%.

While these are large improvements, the series is also highly leptokurtic, and much of the success
may be attributed to just a few outliers. Mizrach (1991) proposes a framework for comparing MSPEs
under weak populations assumptions. Consider two forecasts, §; and §, with respective forecast

e e, A

g T R L s AT A T R =
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Table 3: Seminonparametric Density Estimation®

AR Model GAR Model

Knl| k BIC k BIC

0 10 -0.56674 | 14 -0.57885
0| 12 -062230| 16 -0.71839
1 |36 -0.66595| 40 -0.67731
2 | 143 -0.48164 | 147 -0.49354
p: lag length in the conditional mean equation;
K.: degree of the polynomial allowing departures
from normality; Ky: degree of the polynomial allow-
ing heterogeneity; k: number of parameters.

0o ol R

®loo oo 0o OOf

errors, e; = y — i and e3 = y — §a, drawn from some population (Ey, E3). Letting MSPE, be the

mean-squared prediction error of forecast i, i.e., MSPE; = L 7, e, we test the null hypothesis Hy:

MSPE, = MPSE,. Defining U = E; — E; and V = E; + E;, Mizrach (1991) shows that statistic

-1 2
n”t i1 U5

nt T (1 = 25)ar

(9)

with sy = 1 M.H_E VU4 Vs4 e, 18 distributed asymptotically N(0,1) when the order of dependence
is known to be £

Applying statistic (9), we find that the improvements over the RW for hoth the linear AR and
GAR models are statistically significant at the 99.9% level. The improvement of the GAR over Lhe

linear AR model is not statistically significant.

5.3. Conditional Density Estimation

Using the AR(8) model for the conditional mean we considered SNP models with increasing
degrees K, and K. As Table 3 shows, there is strong evidence for non-normality and heterogeneity
in the data. The linear model with the lowest BIC value (-0.66959) is an SNP(8,2,1) model. Using
the subset GAR for the conditional mean, it appears that the GAR terms remove heterogeneity,
but not non-normality. The lowest BIC value (-0.71839) was obtained for an SNP(8,2.0) model. As
Table 1 indicates, the GAR model still leaves behind considerable excess kurtosis in the residuals.

6. Conclusions

Nonlinearities are omnipresent in time series modeling, especially, in economic time series. In
many cases though, we can be quite ignorant about the functional form these nonlinearities take.
One way to approach this problem, without completely abandoning parametric estimaltion, is to use
a series estimator as in the GAR model.

We analyzed a high-frequency time series of financial asset returns that appears to be nonlinear
A GAR model captured these nonlinearities and improved upon a linear AR model regarding both
in- and out-of-sample fit. The improvements were fairly modest though, and we cannot claim a
statistically significant victory for the GAR forecasts.

A simple statistical analysis of the raw data reveals non-normality. Unconditionally, the return
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data are skewed and leptokurtic. The conditional densities are still leptokurtic. Higher-order poly-
nomial transformations of the Gaussian density are required to model the data, regardless of whether
a linear AR or a nonlinear GAR is used for the conditional mean.

The linear AR model leaves us with heterogenous residuals. This phenomenon is often modeled
with ARCH or random-coefficient models. In our analysis we find evidence that the parameter
variation may be due to misspecification of the conditional-mean equation. The inclusion of GAR
terms removes the heterogeneity present in the data.
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1. Introduction and Motivation

In this paper we consider classes of statistical models that are natural generalizations of

qeneralized linear models. Generalized linear models cover a very broad elass of

models ineluding linear regression, ANOVA, logit, and probit models. An important ele
generalized linear models is that they contain parametric components of which the influence his

wreh

to he determined by the experimentator. Here we describe some lines of thonght

xing the parametrie structure of these components.

In generalized lincar models response variable and explanatory variables are related by pre
R

determined functional forms, e.g., the logit model with a logist

metrie structures are the logistie distribution function and the (lincar) form of the inflienee of the

explanatory variables. Generalizing such a type of model means to abandon 1

fixed components, i.c., the logistic (inverse) link funclion or the lincar predicior. Gener:

the form of the link funetion means to allow for a flexible or parameter free form. Generalizing the

form of the linear predictor means to allow for any unknown function of the explanatory varinhles,

s inten well ki

Allowing for any functional form of infinence for the predictor v n

dimensionality problems, commonly ¢a eurse of dimenstonality (Hnber 1O85). Tn order 1o

avoid this enrse of dimensionality Hastie and Tibshirani (1990) proposed to generalize the linear

predictor by a sum of non-parametric univariate fin

additive models. They contain generalized linear models as a special

is known and the univariate fanetions eperating on the explanatory variables are linen

on means to keep the linear predictor hat 1o replaee, in

Relaxing the form of the link fur

rie [

terms of onr previous example, the logistic function by a

fu

More generally several of these types of response 1
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